Visualization of Assembly Intermediates and Budding Vacuoles of Singapore Grouper Iridovirus in Grouper Embryonic Cells
نویسندگان
چکیده
Iridovirid infection is associated with the catastrophic loss in aquaculture industry and the population decline of wild amphibians and reptiles, but none of the iridovirid life cycles have been well explored. Here, we report the detailed visualization of the life cycle of Singapore grouper iridovirus (SGIV) in grouper cells by cryo-electron microscopy (cryoEM) and tomography (ET). EM imaging revealed that SGIV viral particles have an outer capsid layer, and the interaction of this layer with cellular plasma membrane initiates viral entry. Subsequent viral replication leads to formation of a viral assembly site (VAS), where membranous structures emerge as precursors to recruit capsid proteins to form an intermediate, double-shell, crescent-shaped structure, which curves to form icosahedral capsids. Knockdown of the major capsid protein eliminates the formation of viral capsids. As capsid formation progresses, electron-dense materials known to be involved in DNA encapsidation accumulate within the capsid until it is fully occupied. Besides the well-known budding mechanism through the cell periphery, we demonstrate a novel budding process in which viral particles bud into a tubular-like structure within vacuoles. This budding process may denote a new strategy used by SGIV to disseminate viral particles into neighbor cells while evading host immune response.
منابع مشابه
Selection and characterization of novel DNA aptamers specifically recognized by Singapore grouper iridovirus-infected fish cells.
Singapore grouper iridovirus (SGIV) is a major viral pathogen of grouper aquaculture, and has caused heavy economic losses in China and South-east Asia. In this study, we generated four ssDNA aptamers against SGIV-infected grouper spleen (GS) cells using SELEX (systematic evolution of ligands by exponential enrichment) technology. Four aptamers exhibited high affinity to SGIV-infected GS cells,...
متن کاملA Novel Histone H3 Binding Protein ORF158L from the Singapore Grouper Iridovirus (SGIV)
Singapore grouper iridovirus (SGIV), a major pathogen of concern for grouper aquaculture, has a dsDNA genome with 162 predicted open reading frames, of which a total of 62 SGIV proteins have been identified. One of these, ORF158L, bears no sequence homology to any other known protein. Knockdown of orf158L using morpholino antisense oligonucleotides resulted in a significant decrease of virus yi...
متن کاملSingapore Grouper Iridovirus ORF75R is a Scaffold Protein Essential for Viral Assembly
Singapore Grouper Iridovirus (SGIV) is a member of nucleo cytoplasmic large DNA viruses (NCLDV). This paper reports the functional analysis of ORF75R, a major structural protein of SGIV. Immuno fluorescence studies showed that the protein was accumulated in the viral assembly site. Immunogold-labelling indicated that it was localized between the viral capsid shell and DNA core. Knockdown of ORF...
متن کاملRoles of stress-activated protein kinases in the replication of Singapore grouper iridovirus and regulation of the inflammatory responses in grouper cells.
Stress-activated protein kinases (SAPKs), including p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK), are usually activated in response to different environmental stimuli, including virus infection. In the present study, the roles of SAPKs during Singapore grouper iridovirus (SGIV) infection were investigated in fish cells. The results showed that increased phos...
متن کاملSingapore grouper iridovirus protein VP088 is essential for viral infectivity
Viral infection is a great challenge in healthcare and agriculture. The Singapore grouper iridovirus (SGIV) is highly infectious to numerous marine fishes and increasingly threatens mariculture and wildlife conservation. SGIV intervention is not available because little is known about key players and their precise roles in SGVI infection. Here we report the precise role of VP088 as a key player...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016